دنباله های درونیابی تعمیم داده شده برای فضاهای برگمن

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

دنباله های درونیابی برای برخی فضاهای باناخ

در این پایان نامه که شامل سه فصل است به بررسی دنباله های درونیابی بر روی برخی فضاهای باناخ می پردازیم. در فصل 1 تعاریف پایه ای را که در فصل های بعد مورد نیا ز است بی ان می کنیم . در فصل 2 شرایط لازم و کافی برای آنکه دنباله ای برای فضای هاردی کلاس یک، دنباله ی درونیابی باشد را بیان و اثبات خواهیم کرد. در فصل 3 به مطالعه دنباله های درونیابی جهانی روی برخی فضاهای باناخ خواهیم پرداخت و رابطه ب...

15 صفحه اول

تبدیلات ماتریسی روی فضاهای دنباله ای تعمیم داده شده به وسیله میانگین های وزن دار

در این پایان نامه فضاهای دنباله ای ,z(u, v; p) (u, v; p) و (p) نتیجه گرفته شده به وسیله میانگین وزن دار و فضای دنباله ای تفاضلی که ترکیب میانگین وزن دار تعمیم یافته و عملگر تفاضلی می باشد را تعریف می کنیم و اطلاعاتی راجع به ساختار توپولوژیکی این فضاها مانند کامل بودن و خاصیت ad به دست می آوریم. همچنین ثابت می کنیم که برای فضاهای (u, v; p) و ( ( p به طور خطی آیزومورفیک هستند. دوگان های ?, ? و ? ...

نظریه فضاهای برگمن: گذشته، حال و آینده

موضوع جدید فضاهای برگمن عبارت است از ترکیب استادانه آنالیز تابعی و نظریه عملگرها با نظریه توابع تحلیلی. این نظریه علاوه بر آنکه دارای مفاهیم مشترک زیادی با نظریه فضاهای هاردی است، دارای عناصر جدیدی مانند هندسه هذلولوی،  هسته های بازمولد  و تابعهای گرین دو-همساز است. در این مقاله دو قسمتی سعی خواهیم کرد محققین جوان را با  مقدمات ورود به این دنیای تازه آشنا کنیم.

full text

نظریه فضاهای برگمن، گذشته، حال و آینده(قسمت دوم)

در قسمت اول این مقاله با نظریه فضاهای برگمن آشنا شدیم و تفاوت های اساسی این نظریه را با خویشاوند نزدیک آن، نظریه فضاهای هاردی، توضیح دادیم. در این قسمت، به مرور پیشرفت های اساسی این نظریه می پردازیم. برای ملاحظه نمادها و تعریف ها، خواننده را به قسمت اول مقاله ارجاع می دهیم.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023